Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A cellular timetable of autumn senescence.

Identifieur interne : 004122 ( Main/Exploration ); précédent : 004121; suivant : 004123

A cellular timetable of autumn senescence.

Auteurs : Johanna Keskitalo [Suède] ; Gustaf Bergquist ; Per Gardeström ; Stefan Jansson

Source :

RBID : pubmed:16299183

Descripteurs français

English descriptors

Abstract

We have studied autumn leaf senescence in a free-growing aspen (Populus tremula) by following changes in pigment, metabolite and nutrient content, photosynthesis, and cell and organelle integrity. The senescence process started on September 11, 2003, apparently initiated solely by the photoperiod, and progressed steadily without any obvious influence of other environmental signals. For example, after this date, senescing leaves accumulated anthocyanins in response to conditions inducing photooxidative stress, but at the beginning of September the leaves did not. Degradation of leaf constituents took place over an 18-d period, and, although the cells in each leaf did not all senesce in parallel, senescence in the tree as a whole was synchronous. Lutein and beta-carotene were degraded in parallel with chlorophyll, whereas neoxanthin and the xanthophyll cycle pigments were retained longer. Chloroplasts in each cell were rapidly converted to gerontoplasts and many, although not all, cells died. From September 19, when chlorophyll levels had dropped by 50%, mitochondrial respiration provided the energy for nutrient remobilization. Remobilization seemed to stop on September 29, probably due to the cessation of phloem transport, but, up to abscission of the last leaves (over 1 week later), some cells were metabolically active and had chlorophyll-containing gerontoplasts. About 80% of the nitrogen and phosphorus was remobilized, and on September 29 a sudden change occurred in the delta15N of the cellular content, indicating that volatile compounds may have been released.

DOI: 10.1104/pp.105.066845
PubMed: 16299183
PubMed Central: PMC1310548


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A cellular timetable of autumn senescence.</title>
<author>
<name sortKey="Keskitalo, Johanna" sort="Keskitalo, Johanna" uniqKey="Keskitalo J" first="Johanna" last="Keskitalo">Johanna Keskitalo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, S-901 87 Umea, Sweden. johanna.keskitalo@plantphys.umu.se</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, S-901 87 Umea</wicri:regionArea>
<wicri:noRegion>S-901 87 Umea</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bergquist, Gustaf" sort="Bergquist, Gustaf" uniqKey="Bergquist G" first="Gustaf" last="Bergquist">Gustaf Bergquist</name>
</author>
<author>
<name sortKey="Gardestrom, Per" sort="Gardestrom, Per" uniqKey="Gardestrom P" first="Per" last="Gardeström">Per Gardeström</name>
</author>
<author>
<name sortKey="Jansson, Stefan" sort="Jansson, Stefan" uniqKey="Jansson S" first="Stefan" last="Jansson">Stefan Jansson</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:16299183</idno>
<idno type="pmid">16299183</idno>
<idno type="doi">10.1104/pp.105.066845</idno>
<idno type="pmc">PMC1310548</idno>
<idno type="wicri:Area/Main/Corpus">003F23</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003F23</idno>
<idno type="wicri:Area/Main/Curation">003F23</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003F23</idno>
<idno type="wicri:Area/Main/Exploration">003F23</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A cellular timetable of autumn senescence.</title>
<author>
<name sortKey="Keskitalo, Johanna" sort="Keskitalo, Johanna" uniqKey="Keskitalo J" first="Johanna" last="Keskitalo">Johanna Keskitalo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, S-901 87 Umea, Sweden. johanna.keskitalo@plantphys.umu.se</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, S-901 87 Umea</wicri:regionArea>
<wicri:noRegion>S-901 87 Umea</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bergquist, Gustaf" sort="Bergquist, Gustaf" uniqKey="Bergquist G" first="Gustaf" last="Bergquist">Gustaf Bergquist</name>
</author>
<author>
<name sortKey="Gardestrom, Per" sort="Gardestrom, Per" uniqKey="Gardestrom P" first="Per" last="Gardeström">Per Gardeström</name>
</author>
<author>
<name sortKey="Jansson, Stefan" sort="Jansson, Stefan" uniqKey="Jansson S" first="Stefan" last="Jansson">Stefan Jansson</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="ISSN">0032-0889</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anthocyanins (metabolism)</term>
<term>Carotenoids (metabolism)</term>
<term>Chlorophyll (metabolism)</term>
<term>Chloroplasts (metabolism)</term>
<term>Microscopy, Electron (MeSH)</term>
<term>Mitochondria (metabolism)</term>
<term>Nitrogen (metabolism)</term>
<term>Phosphorus (metabolism)</term>
<term>Photobiology (MeSH)</term>
<term>Photoperiod (MeSH)</term>
<term>Photosynthesis (MeSH)</term>
<term>Pigments, Biological (metabolism)</term>
<term>Plant Leaves (cytology)</term>
<term>Plant Leaves (growth & development)</term>
<term>Plant Leaves (metabolism)</term>
<term>Populus (cytology)</term>
<term>Populus (growth & development)</term>
<term>Populus (metabolism)</term>
<term>Seasons (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Anthocyanes (métabolisme)</term>
<term>Azote (métabolisme)</term>
<term>Caroténoïdes (métabolisme)</term>
<term>Chlorophylle (métabolisme)</term>
<term>Chloroplastes (métabolisme)</term>
<term>Feuilles de plante (croissance et développement)</term>
<term>Feuilles de plante (cytologie)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Microscopie électronique (MeSH)</term>
<term>Mitochondries (métabolisme)</term>
<term>Phosphore (métabolisme)</term>
<term>Photobiologie (MeSH)</term>
<term>Photopériode (MeSH)</term>
<term>Photosynthèse (MeSH)</term>
<term>Pigments biologiques (métabolisme)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (cytologie)</term>
<term>Populus (métabolisme)</term>
<term>Saisons (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Anthocyanins</term>
<term>Carotenoids</term>
<term>Chlorophyll</term>
<term>Nitrogen</term>
<term>Phosphorus</term>
<term>Pigments, Biological</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Chloroplasts</term>
<term>Mitochondria</term>
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Anthocyanes</term>
<term>Azote</term>
<term>Caroténoïdes</term>
<term>Chlorophylle</term>
<term>Chloroplastes</term>
<term>Feuilles de plante</term>
<term>Mitochondries</term>
<term>Phosphore</term>
<term>Pigments biologiques</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Microscopy, Electron</term>
<term>Photobiology</term>
<term>Photoperiod</term>
<term>Photosynthesis</term>
<term>Seasons</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Microscopie électronique</term>
<term>Photobiologie</term>
<term>Photopériode</term>
<term>Photosynthèse</term>
<term>Saisons</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We have studied autumn leaf senescence in a free-growing aspen (Populus tremula) by following changes in pigment, metabolite and nutrient content, photosynthesis, and cell and organelle integrity. The senescence process started on September 11, 2003, apparently initiated solely by the photoperiod, and progressed steadily without any obvious influence of other environmental signals. For example, after this date, senescing leaves accumulated anthocyanins in response to conditions inducing photooxidative stress, but at the beginning of September the leaves did not. Degradation of leaf constituents took place over an 18-d period, and, although the cells in each leaf did not all senesce in parallel, senescence in the tree as a whole was synchronous. Lutein and beta-carotene were degraded in parallel with chlorophyll, whereas neoxanthin and the xanthophyll cycle pigments were retained longer. Chloroplasts in each cell were rapidly converted to gerontoplasts and many, although not all, cells died. From September 19, when chlorophyll levels had dropped by 50%, mitochondrial respiration provided the energy for nutrient remobilization. Remobilization seemed to stop on September 29, probably due to the cessation of phloem transport, but, up to abscission of the last leaves (over 1 week later), some cells were metabolically active and had chlorophyll-containing gerontoplasts. About 80% of the nitrogen and phosphorus was remobilized, and on September 29 a sudden change occurred in the delta15N of the cellular content, indicating that volatile compounds may have been released.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16299183</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>03</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0032-0889</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>139</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2005</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>A cellular timetable of autumn senescence.</ArticleTitle>
<Pagination>
<MedlinePgn>1635-48</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>We have studied autumn leaf senescence in a free-growing aspen (Populus tremula) by following changes in pigment, metabolite and nutrient content, photosynthesis, and cell and organelle integrity. The senescence process started on September 11, 2003, apparently initiated solely by the photoperiod, and progressed steadily without any obvious influence of other environmental signals. For example, after this date, senescing leaves accumulated anthocyanins in response to conditions inducing photooxidative stress, but at the beginning of September the leaves did not. Degradation of leaf constituents took place over an 18-d period, and, although the cells in each leaf did not all senesce in parallel, senescence in the tree as a whole was synchronous. Lutein and beta-carotene were degraded in parallel with chlorophyll, whereas neoxanthin and the xanthophyll cycle pigments were retained longer. Chloroplasts in each cell were rapidly converted to gerontoplasts and many, although not all, cells died. From September 19, when chlorophyll levels had dropped by 50%, mitochondrial respiration provided the energy for nutrient remobilization. Remobilization seemed to stop on September 29, probably due to the cessation of phloem transport, but, up to abscission of the last leaves (over 1 week later), some cells were metabolically active and had chlorophyll-containing gerontoplasts. About 80% of the nitrogen and phosphorus was remobilized, and on September 29 a sudden change occurred in the delta15N of the cellular content, indicating that volatile compounds may have been released.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Keskitalo</LastName>
<ForeName>Johanna</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, S-901 87 Umea, Sweden. johanna.keskitalo@plantphys.umu.se</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bergquist</LastName>
<ForeName>Gustaf</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gardeström</LastName>
<ForeName>Per</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jansson</LastName>
<ForeName>Stefan</ForeName>
<Initials>S</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2005</Year>
<Month>11</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000872">Anthocyanins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010860">Pigments, Biological</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>1406-65-1</RegistryNumber>
<NameOfSubstance UI="D002734">Chlorophyll</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>27YLU75U4W</RegistryNumber>
<NameOfSubstance UI="D010758">Phosphorus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>36-88-4</RegistryNumber>
<NameOfSubstance UI="D002338">Carotenoids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000872" MajorTopicYN="N">Anthocyanins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002338" MajorTopicYN="N">Carotenoids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002734" MajorTopicYN="N">Chlorophyll</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002736" MajorTopicYN="N">Chloroplasts</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008854" MajorTopicYN="N">Microscopy, Electron</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010758" MajorTopicYN="N">Phosphorus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018462" MajorTopicYN="N">Photobiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017440" MajorTopicYN="N">Photoperiod</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010860" MajorTopicYN="N">Pigments, Biological</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012621" MajorTopicYN="Y">Seasons</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>11</Month>
<Day>22</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>3</Month>
<Day>21</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>11</Month>
<Day>22</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16299183</ArticleId>
<ArticleId IdType="pii">pp.105.066845</ArticleId>
<ArticleId IdType="doi">10.1104/pp.105.066845</ArticleId>
<ArticleId IdType="pmc">PMC1310548</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Trends Plant Sci. 2000 Jul;5(7):278-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10871899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Theor Biol. 2000 Aug 21;205(4):625-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10931756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Oct;127(2):566-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11598230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 Apr;53(370):927-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11912235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2002;53:131-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12221970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2002 Dec;5(6):568-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12393021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Feb;131(2):430-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12586868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1958 Mar;68(3):503-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13522652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Nov;133(3):1296-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14526111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2004 Feb;120(2):220-228</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15032856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2004;5(4):R24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15059257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2004 Jun;219(2):191-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15071743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Mar;41(6):831-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15743448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Dev Biol. 2005;66:135-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15797453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Sep;222(1):130-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15809865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1988 Sep;88(1):69-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16666282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2003 Jan;1(1):3-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17147676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1986 Jan;167(1):146-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24241745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1985 Jan;163(1):91-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24249273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1994 Sep;99(3-4):290-296</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28313883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Mar;107(3):873-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7748263</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suède</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Bergquist, Gustaf" sort="Bergquist, Gustaf" uniqKey="Bergquist G" first="Gustaf" last="Bergquist">Gustaf Bergquist</name>
<name sortKey="Gardestrom, Per" sort="Gardestrom, Per" uniqKey="Gardestrom P" first="Per" last="Gardeström">Per Gardeström</name>
<name sortKey="Jansson, Stefan" sort="Jansson, Stefan" uniqKey="Jansson S" first="Stefan" last="Jansson">Stefan Jansson</name>
</noCountry>
<country name="Suède">
<noRegion>
<name sortKey="Keskitalo, Johanna" sort="Keskitalo, Johanna" uniqKey="Keskitalo J" first="Johanna" last="Keskitalo">Johanna Keskitalo</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004122 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004122 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:16299183
   |texte=   A cellular timetable of autumn senescence.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:16299183" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020